Both isoforms of ketohexokinase are dispensable for normal growth and development.
نویسندگان
چکیده
Dietary fructose intake has dramatically increased over recent decades and is implicated in the high rates of obesity, hypertension, and type 2 diabetes (metabolic syndrome) in Western societies. The molecular determinants of this epidemiologic correlation are incompletely defined, but high-flux fructose catabolism initiated by ketohexokinase (Khk, fructokinase) is believed to be important. The Khk gene encodes two enzyme isoforms with distinctive substrate preferences, the independent physiological roles of which are unclear. To investigate this question, and for testing the importance of Khk in metabolic syndrome, isoform-selective genetic lesions would be valuable. Two deficiency alleles of the mouse Khk gene were designed. The first, Khk(3a), uses targeted "knock-in" of a premature termination codon to induce a selective deficiency of the minor Khk-A isoform, preserving the major Khk-C isoform. The second, the Khk(Δ) allele, ablates both isoforms. Mice carrying each of these Khk-deficiency alleles were generated and validated at the DNA, RNA, and protein levels. Comparison between normal and knockout animals confirmed the specificity of the genetic lesions and allowed accurate analysis of the cellular distribution of Khk within tissues such as gut and liver. Both Khk(3a/3a) and Khk(Δ/Δ) homozygous mice were healthy and fertile and displayed minimal biochemical abnormalities under basal dietary conditions. These studies are the first demonstration that neither Khk isoform is required for normal growth and development. The new mouse models will allow direct testing of various hypotheses concerning the role of this enzyme in metabolic syndrome in humans and the value of Khk as a pharmacological target.
منابع مشابه
Properties of normal and mutant recombinant human ketohexokinases and implications for the pathogenesis of essential fructosuria.
Alternative splicing of the ketohexokinase (fructokinase) gene generates a "central" predominantly hepatic isoform (ketohexokinase-C) and a more widely distributed ketohexokinase-A. Only the abundant hepatic isoform is known to possess activity, and no function is defined for the lower levels of ketohexokinase-A in peripheral tissues. Hepatic ketohexokinase deficiency causes the benign disorder...
متن کاملLaminar Organization of Cerebral Cortex in Transforming Growth Factor Beta Mutant Mice
Transforming growth factor betas (TGF?s) are one of the most widespread and versatile cytokines. The three mammalian TGF? isoforms, ?1, ?2, and ?3, and their receptors regulate proliferation of neuronal precursors as well as survival and differentiation in neurons of developing and adult nervous system. Functions of TGF?s has a wide spectrum ranging from regulating cell proliferation and differ...
متن کاملStructures of alternatively spliced isoforms of human ketohexokinase
A molecular understanding of the unique aspects of dietary fructose metabolism may be the key to understanding and controlling the current epidemic of fructose-related obesity, diabetes and related adverse metabolic states in Western populations. Fructose catabolism is initiated by its phosphorylation to fructose 1-phosphate, which is performed by ketohexokinase (KHK). Here, the crystal structu...
متن کاملI-16: Tubulin Reversible Acetylation – Driving The Moves and The Moves Behind The Drive
Background Asthenozoospermia accounts for almost 50% of the cases of male infertility. Our study investigating phosphoproteins differentially expressed in asthenozoosperm has identified the phosphoproteins relevant to sperm motility and the signature molecules likely to be altered in asthenozoospermia. The 66 phosphoproteins differentially expressed included four alpha tubulin isoforms which we...
متن کاملO-12: Tubulin Reversible Acetylation – Driving The Moves and The Moves Behind The Drive
Background Asthenozoospermia accounts for almost 50% of the cases of male infertility. Our study investigating phosphoproteins differentially expressed in asthenozoosperm has identified the phosphoproteins relevant to sperm motility and the signature molecules likely to be altered in asthenozoospermia. The 66 phosphoproteins differentially expressed included four alpha tubulin isoforms which we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological genomics
دوره 42A 4 شماره
صفحات -
تاریخ انتشار 2010